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Abstract 
 
In the report, consequences of hypothetical severe nuclear accidents re-
leases to Nordic marine environment are preliminary considered. The con-
sidered marine area comprises the Baltic Sea (Sweden, Denmark, 
Finland) and the North Atlantic (Iceland, Faroes, Norway) areas. The hypo-
thetical severe nuclear accidents can be related to nuclear power plants, 
nuclear powered submarines or ice-breakers. 
Quite comprehensive survey on radioactive source terms of extremely se-
vere nuclear power and submarine accidents has been done. This enables 
to estimate more realistically possible radioactive releases of various ele-
ments and nuclides to marine environment. One recent reference is of 
course the Fukushima accident and estimated releases there. 
The marine flows and dilution circumstances around the Nordic nuclear 
power plants and in the Baltic Sea area in general, has been studied. Re-
spectively marine flows related to Iceland and Faroes coasts are consid-
ered with measured data and with preliminary 3D-model simulations. The 
substantial depth of sea water in the North Atlantic affect vertical concen-
tration profiles to some extent. At Icelandic or Faroese waters, a potential 
submarine accident would likely occur in a well defined water mass, and 
radioactivity from the accident would be detected and spread with the flow 
regime of the water mass in the world ocean.  
Based on hypothetical severe accidents scenarios, preliminary conse-
quence calculations has been done. It should be emphasised that the con-
sidered severe accident cases, considered in this study, do not directly 
attach any 
specific Nordic nuclear power plant or any specific submarine type. The 
considered radioactive releases will, however, provide specified references 
for more extensive consideration of environmental consequences of se-
vere - or minor – radioactive releases to Nordic marine environment. 
As a reference, the release amounts from a 3000 MWth reactor size were 
used. Based on source term analyses, the chosen release fractions in the 
study were: iodine 20% (of  the total core inventory), caesium 10%, tellu-
rium 10%, strontium 0.5%, ruthenium 0.5%. The considered release event 
to marine environment were assumed to start ten hours after shutdown of 
the reactor. Total released amounts of the most important nuclides were 
estimated to be: 4.85⋅1017 Bq  (I-131),  7.29⋅1016 Bq (Cs-134) and 
4.17⋅1016 Bq (Cs-137). 
Due to the highly contaminated sea food, the arising doses to human from 
a hypothetical severe nuclear power plant accident would be high espe-
cially in local sea area. Based on preliminary results, annual individual 
doses could be ten to some hundreds of millisieverts from local sea area. 
The most important nuclides were Cs-134, Cs-137 and I-131 causing 96% 
of the total ingestion dose. 
In the Baltic Sea area, the arising doses from a severe nuclear power 
plant accident assumed to happen e.g. at Gulf of Finland, would be about 
1/10000 compared to doses in the local sea area. Thus the arising maxi-
mum annual individual dose for fish pathway is in the level of 0.1 mSv in 
the Baltic Sea area.  



Submarine accident assumed to happen at Icelandic waters, has been 
analysed in the study. The calculated collective dose rates to man as well 
as doses to a critical group are significantly lower than doses from natural 
sources. However, in local considerations dose-rates are significantly 
higher than the negligible component to the annual individual dose ob-
tained from natural sources (UNSCEAR, 2000) and, therefore, have to be 
taken into consideration during evaluation of the accident consequences. 
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1 Introduction 

In the activity marine input data and preliminary consequences of hypothetical severe 
nuclear accidents releases to Nordic marine environment are considered. The 
considered marine area comprises the Baltic Sea (Sweden, Denmark, Finland) and the 
North Atlantic (Iceland, Faroe Islands, Norway) areas. The hypothetical severe nuclear 
accidents can be related to nuclear power plants (NPP), nuclear powered submarines or 
ice-breakers. 

Quite comprehensive survey on radioactive source terms of extremely severe nuclear 
power and submarine accidents has been done. This enables to estimate more 
realistically possible radioactive releases of various elements and nuclides to marine 
environment. One recent reference is of course the Fukushima accident and estimated 
releases there. 

The marine flows and dilution circumstances around the Nordic nuclear power plants 
and in the Baltic Sea area in general, has been studied. Respectively marine flows related 
to Iceland and Faroes coasts are considered with measured data and with preliminary 
3D-model simulations. The substantial depth of sea water in the North Atlantic affects 
vertical concentration profiles to some extent.  

The element specific marine transfer data, like sorption factors, has been reviewed. The 
sorption characteristics of various elements affect their behaviour and distribution 
between water and suspended solids in sea. Further this sorption factor creates the 
concentration distributions between sea water and bottom sediment.  

Based on hypothetical severe accidents scenarios, preliminary consequence calculations 
have been done. It should be emphasised that the considered severe accident cases, 
considered in this study, do not directly attach any specific Nordic nuclear power plant 
or any specific submarine type. The considered radioactive releases will, however, 
provide specified references for more extensive consideration of environmental 
consequences of severe - or minor – radioactive releases to Nordic marine environment. 

This report is an interim report of the planned two years research activity. 
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2 Hypothetical severe nuclear accidents in Nordic marine environment 

Around the Baltic Sea there are several nuclear power plant units also in Sweden and in 
Finland. In Forsmark there are three BWR’s (2x2928 MWth and  one  3300  MWth). In 
Ringhals there are four reactors: one BWR (2540 MWth) and three PWR’s (2652, 3135 
and 2775 MWth). In Oskarshamn there are three BWR’s: 1375 MWth, 1800 MWth and 
3300 MWth. In Loviisa there are two PWR’s (2x1500 MWth) (Lahtinen, J., 2012).  A 
summary of nuclear facilities around the Baltic Sea is presented e.g. in an earlier study 
(Nielsen, S.P., et al., 2010). 

In can be concluded that the greatest thermal reactor power of 3300 MW (corresponds 
to about 1000 MWe) represent the highest level of radionuclide inventories which could 
partially be released from the core in a hypothetical severe accident. This kind of 
reference accident case, so called worst case accident scenario, does not refer to any 
specific reactor in Nordic countries, but provides a picture of highest environmental 
consequences which could appear with very low probability. Consequences of smaller 
radioactive releases to Nordic marine environment can then quite easily be estimated 
based on the worst case accident results. Severe nuclear power plant accidents releases 
and consequences are planned to be considered starting from locations of current 
nuclear power plants in Finland and Sweden. 

A severe nuclear power plant or submarine accident could result e.g. from operational 
reasons, coolant leakages (LOCA-accidents) or external treats. The radioactive source 
term from a severe damaged reactor core is in the study mainly assumed to be consisted 
of soluble substances like caesium and iodine radionuclides. The source term evaluation 
will be based on an assumption that functioning of all cooling safety systems of the 
considered reactor has been lost. In this case the reactor core is expected to melt finally 
significantly, causing large releases of volatile nuclides to the marine environment. The 
effect of duration of the source term will also be considered, because it is expected that a 
shorter release will produce elevated seawater and sediment concentrations at the local 
sea area, near the considered nuclear power plant or a submarine vessel. The released 
radionuclides will further disperse via marine flows to the whole Baltic Sea area or to 
the North Atlantic. Despite large dilution, the released radionuclides will cause some 
collective exposure also in the whole Baltic and North Sea areas. 

Nuclear-powered submarine accidents near Iceland or the Faroese coasts might create 
special threats for the local marine ecology. These untypical radioactive release events in 
Atlantic are considered in consequence assessments of the activity as well. 

References 

Lahtinen, J., COSEMA activity working report, 2012. 

Nielsen, Sven P., Lüning, M., Ilus, E., Outola, I., Ikäheimonen, T., Mattila, J., Herrman, J., 
Kanisch, G., Osvath, I., 2010, Baltic Sea, Radionuclides in the Environment, ISBN 978-0-
470-71434-8. 
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3 Marine flows 
 
3.1 Baltic Sea area 

M. Isaksson, P. Roos, V. Suolanen 

Marine flows around the Forsmark NPP and Ringhals NPP 

Modelling of the water movements and ecological impact has been performed for the 
estuarine area outside the Forsmark power plant. Model estimations by Engqvist & 
Andrejev (1999) of the water exchange of the area adjacent to the plant as well as for the 
whole Baltic showed good resemblance with observed circulation. 

Kumblad et al. (2006) was able to estimate the concentration of radionuclides in a 
modelled ecosystem with bioconcentration factors for plants and adsorption coefficients 
(Kd) as input parameters. The model was based on site-specific carbon dynamics and 
three radionuclide specific mechanisms: plant uptake, excretion by animals, and 
adsorption organic surfaces. The model suggest that the water exchange rate in the area 
is important considering radionuclide exposure to organisms, due to dilution of the 
water as well as by replacing the plankton with organisms that are not contaminated. 

Concerning the vicinity of the Ringhals NPP, Holtegaard Nielsen (2005) presents data for 
the circulation I the Kattegat. In contrast to the common description that a large part of 
the area is governed by a basic estuarine circulation, Nielsen found anti-cyclonic 
circulation in a large part of the upper layer. This circulation was driven by a density 
gradient at the border between Kattegat and Skagerrak. 

Spokes et al. (2006) found that the coastline and the islands within the Kattegat 
influence the entire Kattegat Sea region. The influence of the land masses gives rise to 
horizontal gradients in a large number of parameters. Atmospheric transport and 
deposition must therefore, according to Spokes et al., be modelled using the individual 
atmospheric conditions. 

Marine flows around the Loviisa NPP 

Generally, in the Gulf of Finland there is a circulation flow counter-clockwise, following 
the coasts of Estonia, Russia and Finland (Adrejev, et al., 2004).  Thus the salinity of the 
water is slightly lower at the coastal area of Finland than in the coast of Estonia. 

The islands restrict to some extent sea water flow from the Loviisa NPP local sea area 
Hästholmsfjärden to elsewhere of the Gulf of Finland. About distance of five kilometres 
from the plant, the areal density of islands decreases and the average depth of the sea  is 
about 30 - 40 meters. 

The water exchange rate of the local sea area beside the plant is 57 m3/s in normal 
operational use mode. Without cooling flow rate of the plant, natural water exchange 
rate in local sea area is about 28 m3/s. The corresponding water turnover of the local sea 
is about eight times per year. So the cooling flow rate determines the water exchange 
rate in normal operational use of the plant. 
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In this study it is however conservatively assumed that the cooling system is damaged 
during the release and dispersion phases of radionuclides in a severe nuclear power 
plant accident event. The effective dilution in local sea area is smaller in the case of 
natural flow circumstances in the local sea area. 

References 

Andrejev, O., Myrberg, K., Alenius, P., Lundberg, P. A., 2004. Mean circulation and water 
exchange in the Gulf of Finland – a study based on three-dimensional modelling, Boreal 
Environmental Research, 9:1-16. 

Engqvist, A., Andrejev, O., 1999. Water Exchange of Öregrundsgrepen - A Baroclinic 3D-
model Study. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden. SKB 
TR 99-11. 
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Marine Systems 55, 97-121. 

Kumblad, L., Kautsky, U. & Næslund, B., 2006. Transport and fate of radionuclides in 
aquatic environments - the use of ecosystem modelling for exposure assessments of 
nuclear facilities. Journal of Environmental Radioactivity 87, 107-129. 
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Larsen, S., Tjernström, M.,  Svensson, G. & Zagar, M., 2006. MEAD: An interdisciplinary 
study of the marine effects of atmospheric deposition in the Kattegat. Environmental 
Pollution 140, 453-462. 
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3.2 Faroes 

H. P. Joensen 

A brief overview of ocean currents and radioactivity around the Faroe Islands is given in 
this section.  

 

Main currents 

Figure 1 gives an overview of the main surface current systems in the North Atlantic and 
the Nordic Seas (AMAP, 2010; Aure, J. et. al., 1998). 

 

Fig. 1. Overview of main currents in the North Atlantic area (AMAP, 2010; Aure et. al., 
1998) 

The main currents in the upper layer closer to the Faroe Islands and Iceland are 
illustrated in Figure 2 (Hansen, 2000). Warm North Atlantic Water (NAS, IS) is flowing 
northward with branches around the Faroe Islands and Iceland into the Norwegian Sea 
in the north, where it is cooled down and partly sinks to deeper layers. The main water 
flux into the Norwegian Sea is between Iceland and Scotland. A slope current is 
northward along the Scottish and the Norwegian shelf. Cold water (the East Greenland 
Current, EGS) flows from north southward along East Greenland through the Denmark 
Strait in the south, and continues westward south of Greenland. A northern branch flows 
eastward north of Iceland and towards the Faroe Islands (the East Icelandic Current, 
EIS), where it meets warm Atlantic Water. The Icelandic Front (IF) is found where the 
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warm Atlantic Water from the south meets colder water from the north. The front 
separates the two water masses. It is relatively close to the Faroe Islands, and the warm 
Atlantic Water flow north of the Faroes (the Faroe Current, FS) becomes a narrow 
eastward flow.  

The main pattern of the southward overflow at lower depth from the north across the 
Greenland-Scotland  ridge  and  into  the  North  Atlantic  is  shown  in  Figure  3  and  4.  It  
contains cold water from the deep layers in the north. In the Faroese area, the main 
overflow occurs in the bottom layer of the Faroe-Shetland channel in the east, between 
Shetland and the Faroe Islands. The overflow is part of the mass balance system between 
northward and southward water flow that again is part of the great conveyor belt known 
in oceanography, i.e. the thermohaline circulation in the world ocean (Fig. 5). 

 

Water masses and radioactivity 

Ocean water is characterized by physical and chemical properties as density, 
temperature and salinity. The world ocean contains large water bodies that can be 
identified according to their physical and chemical properties. The water bodies are 
known as “water masses” in oceanography.  

Figure 6 illustrate the average water mass distribution around the Faroe Islands. The 
boundaries between the masses will always be somewhat ambiguous. They have 
different origins, according to the flow patterns in the open ocean, and this needs to be 
considered in the case of e.g. a submarine accident. A potential submarine accident 
would likely occur in a well defined water mass, and radioactivity from the accident 
would be detected and spread with the flow regime of the water mass in the world 
ocean.  

Vertical profiles of Cs-137 and Sr-90 have been taken around the Faroe Islands. Results 
from a survey in August 1990 at a station north of the islands (Fig. 7) are shown in 
Figure 8, together with the ratio between the activity concentrations (Dahlgaard et.al., 
1991). The position is at 63oN20’N6o05’W, where the bottom depth is 2400m. The origin 
of the samples as related to water mass specification was determined from 
hydrographical analyses. A notable maximum is observed in the profiles at 400m. The 
ratios indicate input of the isotopes from other sources than global fallout. The range of 
the isotope ratio is 2.1-3.0, and Dahlgaard et al. conclude that it corresponds to increased 
input from Sellafield/Chernobyl, and that the peak at 400m depth as based on results 
from their hydrographical measurements corresponds to input of seawater from the 
Greenland Sea (cf. Fig.4). The lowest ratio of 2.1 at 1000m may still be considered 
relatively high compared to the fallout ratio of about 1.5, as this water had not recently 
been in contact with the atmosphere.  

Long term time series of radioactivity in Faroese waters are shown in Figures 9 and 10 
(AMAP, 2010), together with measurements from off the west and east coasts of 
Greenland. The activity concentrations are generally observed to be lower off the Faroe 
Islands than off the Greenland coasts. A signal from the Chernobyl accident can be seen 
in the Faroese data set. 
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Fig. 2. Upper layer water flows. (Hansen, 2000). 

 

Fig. 3. Main pattern of overflow water. (Hansen, 2000). 
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Fig. 4. Cold southward  flow over the Greenland-Iceland-Scotland ridge. The blue area  
illustrates the depth below 1000m (Hansen, 2000). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The conveyor belt showing the thermohaline circulation in the world ocean 
(picture from internet). 
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Fig. 6. Usual water mass distribution. (Hansen, 2000). 

 

Fig. 7. Bottom topography. Depth profiles were taken at the station  
marked with the red dot. 
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Fig. 8. Profiles of Cs-137 and Sr-90 north of the Faroes in August 1990(cf. Fig. 6). 

 

Fig. 9. Cs-137 in seawater off the coasts of the Faroe Islands and Greenland. 
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Fig. 10. Sr-90 in seawater off the coasts of the Faroe Islands and Greenland. 
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3.3 Iceland 

S. E. Pálsson  

The following are excerpts from the MARICE-E-report MER-13-2012, which give a 
glimpse of the structure of the marine model used at the University of Iceland and which 
will be used for further work within COSEMA.   

Introduction 

In order to simulate the hydrography of Icelandic waters the workgroup MARICE at the 
University of Iceland has developed the numerical ocean model CODE. With this report  a 
detailed description of the recent model version CODE 9.221 is given and its output is 
presented: the hydrography of Icelandic waters during the time period 1992 to 2006. 
The model was forced by the 6 hourly NCEP/NCAR re-analysis atmospheric fields. Daily 
river discharge data of 58 Icelandic rivers, estimated by the hydrological model WaSiM 
operated by the Icelandic Meteorological Office, were included as well as all available 
CTD profiles recorded from 1992 to 2006 in Icelandic waters. The CTD data was 
assimilated into the simulation. I.e. with an iterative procedure correction terms were 
determined which minimised the deviation between simulated and observed 
temperature and salinity profiles.  

The presentation of the model output is confined to charts of monthly mean flow, 
temperature and salinity at the depth of 50 m and to overall model error estimations. 
For a more profound analysis of the data set the reader is referred to the following 
publications of the authors. 

Model description 

CODE (Cartesian coordinates Ocean model with three-Dimensional adaptive mesh 
adaption and primitive Equations) is a three-dimensional, primitive equations, z-level, 
coupled seaice/ ocean model. The basic idea behind CODE is the simulation of basin-
scale ocean dynamics (length scale in the order of 10000 km) including the small-scale 
structures, with length scales less than 10 km, of selected areas of interest. Additionally 
the computational costs of the simulation should be minimised to enable the 
computation of multi-decadal runs within an acceptable length of time. Both points could 
be realised using the technique of adaptive mesh refinement. Though this involves more 
complicated numerical methods the disadvantages of conventional nesting (higher 
computational effort, missing coupling between several model runs, numerical errors at 
open boundaries) or finite element (higher computational effort) approaches could be 
avoided. The simulation presented here – entire North Atlantic/Arctic Ocean with highly 
resolved (1 km) Icelandic waters – was computed on an Intel Xeon 3.33 GHz CPU and 
needed 92 hours for the simulation of one year. 

First CODE application in COSEMA 

Based on topographic and hydrographic criteria nine compartment boxes, horizontally 
dividing the Icelandic waters, were defined (Fig. 17 and Table 1). These definitions were 
transferred into the ocean model and a series of model experiments were carried out. 
Within these experiments the mean current and diffusion fields averaged over the 
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period 1992 to 2006 were used. At the beginning of each model run a mathematical 
tracer concentration was set to 1 within one of the boxes. Then the advective and 
diffusive spreading of this concentration was simulated. After the simulation time of 24 
hours the model was stopped, and the according flux rates between the boxes were 
computed (Fig. 18). 

 

Fig. 11. Schematic process of adaptive grid refinement, following the algorithm of 
Khokhlov (1998). The large cube on the left side (adaption level 0) is split into 8 
“children” of adaption level 1. Hence the model equations are no longer solved on the 
“parent cell”. However, the “parent cell” is not removed from the computer’s memory. It 
is obtaining the average properties of its children at each time step instead. 

Overall view of model over the North Atlantic: 
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Fig. 12. The computational mesh after the first step of horizontal mesh refinement. 

 

Fig. 13. The computational mesh after the fourth step of horizontal mesh refinement. 
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Fig. 14. The computational mesh after the final seventh step of horizontal mesh 
refinement. 

 

Fig. 15. The computational mesh’s vertical structure. 
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Fig. 16. The location and mean discharge of rivers included within the simulation. 
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Fig. 17. Definition of compartmental boxes for COSEMA modelling. 

 

Table 1. Volume and depth of boxes. 
 

box no. volume (m³) mean depth (m) 
1 0.30875736E+14 0.41388681E+03 
2 0.45874487E+13 0.19979407E+03 
3 0.14862981E+14 0.39440656E+03 
4 0.42704377E+14 0.69592224E+03 
5 0.50321238E+14 0.62822296E+03 
6 0.11065060E+15 0.92798999E+03 
7 0.69452649E+14 0.10830667E+04 
8 0.40931894E+14 0.41316107E+03 
9 0.51804176E+14 0.84404614E+03 
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Fig. 18. Boxes with transfer parameters, flow rates between boxes in Sverdrup (1 Sv = 
106 m3 m-1). 
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4 Radioactive source term analyses 
 
4. 1 NPP accident source term 

J. Lahtinen 

 
4.1.1 Background 

At the project meeting in March it was decided that the releases to the ocean in 
Fukushima should be used as a basis of the COSEMA source term. It is known that the 
situation in Fukushima was quite a complex one: there were three reactor facilities 
affected and there were planned and unplanned releases. In addition, deposition of 
airborne radioactive releases onto sea also constituted a source that – according to some 
estimates – is about the same order or even bigger as the direct releases to the ocean. 
Rain water washout of contaminated soils has also been mentioned but this contribution 
will become detectable in course of time as the concentrations along the coast have 
decreased. 

Several papers and other documents addressing the marine source term of Fukushima 
have been published (see the list of references). Some assessments rely mostly on 
measurements of concentrations in sea water, some on measurements and model 
calculations, and a few primarily on calculations. Most documents deal only with 
caesium (137Cs, 134Cs) and (sometimes) 131I. Estimated quantitative values of direct 
releases to the ocean vary, although it is generally agreed that the planned release of 
waste water which was “slightly contaminated” is insignificant as compared to the 
unplanned releases: 

• 137Cs: from 3.5 to 27 PBq.  
• 134Cs: about the same as for 137Cs. 
• 131I: from 11 to about 80 PBq. 

Better and more reliable estimates are likely to be available after the UNSCEAR report 
will be published (Weiss, 2012). 

STUK, which was responsible for defining the NPP source term to be used in COSEMA 
calculations, decided to use the paper of Bailly du Bois et al. (2011) as the basic source 
for source term estimation. It is likely that the source term – described originally in the 
project document “Marine source term of Fukushima NPP accident for NKS/COSEMA 
project” (Lahtinen; STUK, rev. 2 9.5.2012) – is conservative; this was discussed briefly at 
the project meeting in Oslo in September but no changes were made. 

One of the reasons to use the paper of Bailly du Bois as a corner stone was that it is based 
on measurements and that it considers also some other nuclides than caesium isotopes 
and 131I. 

4.1.2 Fukushima source term 

Bailly du Bois et al. (2011) took the advantage of measurement results when estimating 
the marine source term of Fukushima (Fig. 19). They derive the following conclusions: 
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Fig. 19. Evolution of 137Cs concentrations and 131I/137Cs ratios in sea water at less than 2 
km from the Fukushima Dai-ichi power plant (Bailly du Bois et al., 2011). 

 

 Release of 27 PBq (12 PBq – 41 PBq) of 137Cs from March 21 to July 18. 
  134Cs/137Cs concentration ratio was close to 1 and the decay-corrected 131I/137Cs 

ratio close to the plant was 24–18 from March 26 to April 8. 
 90Sr/137Cs and 99Tc/137Cs concentration ratios were 0.02 and 0.01 respectively 

(rough estimates). 

 

In order to define a source term based on Bailly du Bois et al. one can make the following 
assumptions: 

 In Fukushima all contaminated water was released from the core of Unit 2 (BWR 
type, 760 MWe, 2380 MWth). (This of course is not true.) 

 The release took place from March 26 to April 8. 
 134Cs and 137Cs activity concentrations in sea water were the same. 
 Decay-corrected 131I/137Cs concentration ratio in water was 20. 
 90Sr/137Cs and 99Tc/137Cs concentration ratios in water were 0.02 and 0.01 

respectively. 
 Total 137Cs release was 25 PBq. 

From the above the released (decay-corrected for I-131) total activities can be 
estimated: 
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 137Cs: 25 PBq (corresponds approximately to a release fraction of 11 %)1. 
 134Cs: 25 PBq (11 %)1 
 131I: 500 PBq (23 %)1 
 90Sr: 0.5 PBq (0.3 %)1 
 99Tc:  0.25  PBq  (99Tc activity originates apart from direct fission also from the 

decay of 99Mo and 99mTc-99)2 

If one follows here the same conventional procedure as in the case of releases to the 
atmosphere, the caesium release fraction given above can be applied to the caesium 
group (see Table 2), 131I release fraction to the iodine group and 90Sr release fraction 
to the strontium group. 99Tc implies that nuclides in the ruthenium group were also 
released. This is supported by the fact that 58Co was detected in the water too 
(TEPCO, 2011). In addition, tellurium (and 132I) was found (IRSN, 2011a; IRSN, 
2011c).  
 

Table 2. Nuclide groups (NUREG, 1990)3. 
 

Inert gases 
 

Kr-85, Kr-85m, Kr-87, Kr-88, Xe-133, Xe-135 

Iodine 
 
 

I-131, I-132, I-133, I-134, I-135 

Cesium 
 

Rb-86, Cs-134, Cs-136, Cs-137 

Tellurium Te-127, Te-127m, Te-129, Te-129m, Te-131m, Te-132, Sb-
127, Sb-129 
 

Strontium 
 

Sr-89, Sr-90, Sr-91, Sr-92 

Ruthenium 
 
 

Co-58, Co-60, Mo-99, Tc-99m, Ru-103, Ru-105, Ru-106, Rh-
105 

Lanthanium  
 

Y-90, Y-91, Y-92, Y-93, Zr-95, Zr-97, Nb-95, La-140, La-141, 
La-142, Pr-143, Nd-147, Am-241, Cm-242, Cm-144 
 

Cerium  
 

Ce-141, Ce-143, Ce-144, Np-239, Pu-238, Pu-239, Pu-240, Pu-
241 

Barium Ba-139, Ba-140 
                                                
1 The  nominal  equilibrium  inventory  of  the  Olkiluoto  BWR  (2500  MWth) is used as a reference. Note that the 
actual Fukushima inventory depends on the fuel burn-up and the power history before scram (and also partly on 
the fuel composition details). 
2 99Tc activities are normally not given in the lists of important radionuclides in a reactor. 
3 There also exist groupings that differ a bit from the one presented here. 
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4.1.3 COSEMA source term 

The nuclear power plant sites in COSEMA are Loviisa (PWR, 1500 MWth), Forsmark 
(BWR, 3300 MWth),  Ringhals  (PWR,  3135  MWth)  and  Oskarshamn  (BWR,  3300  MWth). 
There are several units at every site but those mentioned have the greatest thermal 
power. If actual inventories are not available, the inventories of the Loviisa and Olkiluoto 
reactors can be scaled and used in calculations. 

As a very crude approximation one may assume that the release fraction for the 
tellurium group is the same as that for caesium and the release fraction for the 
ruthenium group is the same as that for strontium. Taking this and the  reasoning in the 
preceding section into account the release fractions for the COSEMA studies are chosen 
to  be:  iodine  20  %,  caesium  10  %,  tellurium  10%,  strontium  0.5  %,  ruthenium  0.5  %.  
Other groups with smaller release fractions can be considered if needed. 

It is realistic to assume that there is a delay between the reactor shutdown and start of 
the release. A 10-hour delay could be used, for example. 

Two release periods are to be considered: three days and three weeks.  
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4.2 Submarine accident source term 

M. Iosjpe 

Inventory 

The source term consists of an inventory of radionuclides, released as a function of time 
and a release point. Each of these elements will be described below.  

The core inventory has primarily two components: the fuel matrix itself and the fuel 
burn-up. While the fuel matrix itself has only indirect influence on the amount of fission 
products, the amount of transuranics and release rates will depend directly on the type 
of matrix. In the current work, with its emphasis on a credible approach, the most 
probable representation of a Russian third-generation submarine core is a core load 
with  63%  enriched  fuel  with  259.7  kg  U-235  in  a  dispersion  (UO2-Al/ UO2-Zr) or 
intermetallic configuration (UAlx-Al) (Reistad, 2008). This composition has been verified 
to fit the only suggested core geometry for other than first-generation Russian 
submarines. However, as there exist an indefinite number of core configurations 
corresponding to various fuel volumes, the selection criterion has been to apply similar 
fuel density (4.5 Ug/cm3) as that reported for Russian floating nuclear power plants 
under construction (Chuen and Reistad, 2007). A maximum credible inventory has been 
developed on the basis of a conservative approach to the average annual burn-up for 
third-generation reactors.  

Average annual burn-up has been calculated to 30 effective full-power days (EFPD) and 
the maximum operational period hypothetically set to 20 years. At present, the average 
life-span for this class of vessels is 13.2 years. As the current decommissioning rate is 
higher than the commissioning rate, we may assume that this value will decrease slowly 
in the future. However, as the selection criterion has been a maximum credible burn-up, 
and normal vessel life is more than 13.2 years, we may assume 20 years of operation as a 
conservative estimate as a basis for calculating the radionuclide inventory at the time of 
the accident. The resultant burn-up is 114,000 MWd, or 269,000 MWd/tons of heavy 
metal. We have also assumed an operating power fraction of 0.5 at the time of accident, 
resulting in a high inventory of short-lived isotopes when the hypothetical accident 
occurs. The core inventory and core decay heat were developed using HELIOS 1.8 and 
SNF 1.2. HELIOS is a detailed reactor physics transport and burn-up code developed and 
supported by Studsvik Scandpower (Reistad, 2008). 

Accident scenario  

The hypothetical scenario forming the basis for this study, is if a core-melt / loss-of 
coolant accident (LOCA) (Reistad , 2008) was to occur together with another type of 
incident, such as an explosion. Then there would be a credible risk of substantial damage 
to all parts of the submarine. An explosion that ruptured the hull and provided water 
intrusion in the reactor compartment would also contribute to cooling the corium.  

In  this  study,  we  will  use  the  scenario  described  in  Table  3,  which  corresponds  to  
Scenario 1 from (Reistad, 2008). 

 



 
COSEMA 
 
Report for the NKS-B activity, February 15, 2013     

29(51) 

 

 

 

Table 3. Release fractions for maximum credible accident for third-generation 
submarine. 

 Phase  1:  From  t=0.1  days  to  
t=1 year 

Phase 2: From t=1 year 

Coremelt release Immediate release of release fraction as given in Table 4 (High flux 
reactor) 

Fuel corrosion Constant release of fuel corrosion products: corrosion rate: 0.01 % 
of fuel material annually 

 

Release fractions  

The main methodological problem here is the lack of relevant information on fuel 
materials, and secondly, on radionuclide behavior in fuel matrixes under extreme 
conditions (high temperature, saltwater intrusion etc.). However, a civilian nuclear 
system with potentially similar attributes to those of third-generation reactors – high 
power densities, high enrichment levels and moderate burn-up levels (50%) – is found 
in civilian research reactors. The hypothetical correspondence in fuel design and fuel 
properties has formed the basis for assessments of fuel consumption, as in 
(Reistad,2008). Few civilian research facilities have been analyzed on the basis of 
probabilistic methods; deterministic accident analysis remains the most applied method 
for these facilities. The source term evaluation for research facilities displays differences 
similar to those shown in Table 4, describing the release fractions for three HEU (highly 
enriched uranium ) highly enriched uranium highly enriched uranium   - fueled research 
reactors.  
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Table 4. Release fractions in the case of core meltdown following a LOCA (Abou Yehia 
and Bars, 2005). 

 HIFAR High flux reactor SAFARI 

Noble gases 1 1 1 

I 0.3 0.8 1 

Br  0.8  

Cs 0.3 0.8 0.163 

Te 0.01 0.8 0.192 

Rb 0.3 0.01  

Ru 0.01 0.1 0.005 

Ba, Rh, Sr  0.1  

Actinides  0.01 0.1 

Other  0.01  

 

The second component of the release fraction is fuel degradation and corrosion. Based 
on the hypothesis of the fuel matrix and the accident scenario, the corrosion processes of 
the uranium-loaded fuel component, UO2 or UAlx, starts immediately when the seawater 
enters the primary circuit. Experiments for long-term dissolution of fuel elements in 
seawater obtained dissolution rates from 0.1 to 1% of the fuel per year at temperatures 
from 10 to 20oC (Petrov, 1991).  

 Release Scenario 

The total and the individual releases of the radionuclides that had the most significant 
effect on the release rates during the initial and later phases of accidental releases are 
presented in Figure 20. As expected, the maximum release occurs during the initial 
period after the accident (the instant release fraction) with maximum values of 1.6·1018 
Bq at the beginning of release. Figure 20 shows that short-lived radionuclides of iodine 
and barium are most significant during the initial phase of release according to the 
present scenario, while 90Sr and 137Cs dominates in the final period of release.  
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Fig. 20. The release scenario for the initial time of 0-0.5 year (top) and for the time 0.5-
100 years (bottom) 
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5 Calculation scenarios 
 
NPP accident at coast of the Gulf of Finland 

V. Suolanen 

As an example of consequences of severe nuclear accidents in the Baltic Sea area, a 
hypothetical severe nuclear power plant accident taken place at the northern coast of 
the Gulf of Finland, was preliminary modelled in the study. A current nuclear power 
plant with two reactor units and the local sea area is shown in Fig. 21. below.  

 

 
 

Fig. 21. Nuclear power plant and local sea area.   

The radioactive source term to sea water was determined from the core inventory of the 
VVER-1000 reactor (Anttila, 2005) and applying further the element specific release 
fractions obtained in the source term analyses of this study (chapter 4.1, J. lahtinen). The 
used fuel burn-up was 50 MWd/kgU. Total released amounts of activity of the 
considered severe reactor accident is presented in Table 5.  
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Table 5. Total amounts of activity released to sea in a hypothetical severe VVER-1000 
accident. There is 71 tU in the core of the reactor.  

Nuclide Specific activity  
at shutdown 

(GBq/tU) 

Core activity at 
shutdown 

(Bq) 

Release fraction Total release to 
sea (Bq), t>10 h 

C-14 5.00 101 3.55 1012 0.2 7.10 1011 

Co-60 2.45 104 1.74 1015 0.005 8.70 1012 

Sr-90 3.96 106 2.81 1017 0.005 1.41 1015 

Tc-99 7.12 102 5.06 1013 0.005 2.53 1011 

I-131 3.56 107 2.52 1018 0.2 4.85 1017 

Cs-134 1.03 107 7.29 1017 0.1 7.29 1016 

Cs-137 5.87 106 4.17 1017 0.1 4.17 1016 

 

In order to study the effect of duration of the release to consequences, a short-term 
release of 3 days (Figures 22 and 23) and a long-term release of 21 days (Fig. 24) were 
considered. The highest activity release rate is for iodine (I-131) which can clearly be 
seen from the linear scale Fig. 22.. Other important soluble release nuclides are C-134 
and C-137. 

In the long-term release assumption, the released total activity is dispersed for a longer 
time period. The effect of radioactive decay to the release rate of the short-lived I-131 
can be seen from Fig. 24. 
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Fig. 22. Release rates temporal behaviour presented in linear scale for the most 
important radionuclides I-131, Cs-134 and Cs-137. 
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Fig. 23. Release rates of all important radionuclides in the short-term release 
assumption. 
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Long-term release (21 days) to sea
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Fig 24. Release rates of important radionuclides in the long-term release assumption. 
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The aquatic transfer model consists of compartments for the local sea area close to 
nuclear power plant, the Gulf of Finland and the Baltic Sea dispersion area. Each water 
compartments has connection to bottom sediment layers (sedimentation term) and vice 
versa (resuspension term). Some main parameter values used in model calculations with 
Detra-code are presented in Table 6. 

Table 6. Parameter values related to radionuclides transfer model of a hypothetical 
severe reactor accident at Gulf of Finland. 

Water comp. characteristics                      Local sea area      Gulf of Finland      Baltic Sea 

volume (m3)                                                   1.0 108                    5.5 1011                 1.4 1013   

water exchange rate (m3/a)                      8.8 108                    6.0 1011                 5.0 1012      

suspended sediment load (kgs/m3)         5.0 10-3                   3.0 10-3                 4.0 10-3             

sedimentation rate (kgs/m2/a)                1.7 10-1                   1.7 10-1                  4.0 10-1    

Sediment characteristics                                        surface sediment    buried sediment 

volume fraction of water                                        90%                            72 % 

       resuspension of sedimented material                  10 % of total sedimentation 

       water exchange rate                                                  1 a-1 

Kd-values (liter/kgs)               Cfish (Bq/kgf)/(Bq/liter)  ; (IAEA TRS 422 & 472)   

C                100                           2000 

Co           5000                           1000 

       Sr                 10                                   2   

       Tc           5000                                 30 

       I                 100                                 10  

       Cs            1000                              250 

 

The activity concentrations obtained in the local sea area water after a severe accident 
are very high, which is illustrated in Fig. 25.  The large dilution capacity of the Gulf of 
Finland and the Baltic Sea will effectively decrease the radionuclide concentrations in 
sea water. 
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Radionuclide concentrations in sea water
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Fig. 25. Maximum activity concentrations in sea water in local and areal scale after a 
severe reactor accident.   

In case the highly contaminated sea food will be used by human, the arising doses would 
be high especially in local sea area (Fig. 26), total maximum annual individual dose about 
600 mSv. Based on preliminary results the most important nuclides are Cs-134, Cs-137 
and I-131 causing 96 % of the total ingestion dose.  
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Fig. 26. Dose estimates for fish consumption from local sea area at the Gulf of Finland 
after a hypothetical severe reactor accident. 
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In the consideration of the Baltic Sea area, radionuclides concentrations of dominant 
long-lived nuclides (Cs-134, Cs-137) are about 1/10000 compared to concentrations 
obtained in the local sea area, close to the damaged NPP. Thus the arising maximum 
annual individual dose for fish dose pathway in the Baltic Sea area is in the level of 0.1 
mSv.  
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Submarine accident at Iceland waters 

M. Iosjpe 

Brief description of the COSEMA compartment model 

The COSEMA model is based on the methodology developed for the NRPA box model, 
which uses a modified approach for compartmental modeling (Iosjpe et al., 2002). This 
methodology allows for simulation of radionuclide dispersion over time.  

The compartments, which include the volumes, mean depth and water exchanges 
between boxes for the Iceland coastal waters, were developed during the COSEMA 
project by Geislavarnir Rikisins (Iceland). Additionally, two compartments surrounding 
the Iceland boxes were developed on the basis of the NRPA box model. The surface box 
structures for both models are shown in Figure 27.  

 

      

 
Fig. 27. The structure of the surface compartments in the COSEMA (top) and the NRPA 
(bottom) models and location of the potential accident (red dot). 

The COSEMA model adopts the sediment structure from the NRPA model, including the 
surface, mid-depth and deep sediment compartments for all water regions. Water-
sediment interactions include sedimentation, diffusion of radioactivity through pore 
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water in sediments, resuspension, mixing due to bioturbation, particle mixing and a 
burial process for radionuclides in deep sediment layers. Radioactive decay is calculated 
for all compartments. The contamination of biota is further calculated from the known 
radionuclide concentrations in filtered seawater in the different water regions. Collective 
doses to the world population are calculated on the basis of seafood consumptions, in 
accordance with available data for seafood catches and assumptions about human diet in 
the respective areas (Nielsen et al., 1997; EC, 2000; IASAP, 2003).  

The collective dose D (manSv) can be determined using the following expression: 

,dt)t(CACFDCFD
T

0
ij

m

1j

n

1i
illj

k

1l
lj                                                                             (1) 

where [0, T] is the time interval (y); DCFj (Sv/Bq) is the dose conversion factor for 
radionuclide j (j  = 1,2,…, m); CFlj (m3/t) is the concentration factor for radionuclide j in 
seafood of type l (l =  1,2,…,  k);  Ail (t/y) is catch of seafood of type l in the model 
compartment i; (i = 1,2,…,n);  Cij (Bq/m3) is the concentration of radionuclide j in filtered 
seawater in model compartment i; and l is the edible fraction for seafood of type l. The 
following assumptions (CEC, 1990; EC, 2000; IASAP, 2003) for the edible fractions of 
marine produce to the human diet have been used: 50 % for fish, 35 % for crustaceans 
and 15 % for molluscs). 

Collective dose rates DR can be defined using the following expression: 

,
tt

)t(D)t(DDR
12

12                                                                                                           (2)            

where )t(D 1  and )t(D 2  are collective doses at times 1t and 2t , respectively. 

It is necessary to note that the model can also easily be used to provide information on 
impact doses/dose rates from different marine regions, and provide dose assessment to 
different population groups. Furthermore, the dose rate will be used in the present dose 
assessment because this parameter can easily indicate dose dynamic and is therefore 
widely used in recent investigations (EC, 2003; IASAP; 2003). 

Accident location  

The location (the compartment 2 in Figure 28) chosen for the accident was based on an 
evaluation of the radiological sensitivity of different marine areas. Radiological 
sensitivity analysis of Arctic marine regions shows that the shallow waters can be 
considered as the most vulnerable areas in the Arctic region, in terms of the effects of 
possible radioactive contamination (Iosjpe et al., 2003; Iosjpe, 2011; Iosjpe & Liland, 
2012). 
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Results and discussion 

The radioecological consequences of the potential scenarios leading to accidental 
releases of radioactivity have been evaluated on the basis of the calculated 
concentrations of radionuclides in typical sea foods, collective dose rates to man and 
individual doses for the critical groups and doses to marine organisms.  

Concentration of radionuclides in seafood 

The Food and Agriculture organisation of the United Nations and World Health 
Organisation have provided recommendations (guideline levels) for the maximum 
permissible concentration of radionuclides in foods, when contaminated after an 
accidental release of radionuclides (CAC, 2006).   According to the Codex Alimentarius 
Commission (CAC, 2006) radionuclides can be separated into four groups. Examples of 
some typical radionuclides for each group are presented in Table 7.  

Table 7. Examples of international guideline levels for radionuclides in food. 

Guideline Level (Bq/kg) Radionuclides in Foods 

Infant Foods Other Foods 

Group 1 238Pu, 239Pu, 241Am 1 10 

Group 2 90Sr, 106Ru, 129I 100 100 

Group 3 60Co, 134Cs, 137Cs 1000 1000 

Group 4 3H, 14C, 99Tc 1000 10000 

 

Following the CAC (2006) recommendations, the model calculations for fish, crustaceans 
and molluscs are provided separately for each group of radionuclides presented in Table 
7. 

It is clear that the highest level of sea food contamination is expected in box 2 (the 
accident location compartment). Results of the simulations of the radionuclide 
concentrations in seafood (fish, crustaceans and molluscs) for group 1 are shown in 
Figure 28. Results show the three most significant radionuclides in the group and the 
total concentration for the group.  
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Fig. 28. Predicted concentration of radionuclides (Group 1) in sea food. 

 
Results of the model calculations indicate that the concentration of radionuclides from 
group 1 in seafood lies significantly under the CAC guideline levels for fish and 
crustaceans, but considerably exceeding the CAC guideline level for molluscs for infant 
food during the first four weeks after the accidental release began. The total 
concentration level of radionuclides in seafood for group 1 is heavily dominated by 238Pu. 
Therefore, it is interesting to note that the concentration of 238Pu in  compartment  2  is  
one to three orders of magnitude higher than in other boxes (results are presented in 
Figure 29). 
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Fig. 29. Concentrations in sea waters in compartment 1-9. 

 
Predicted concentration of Group 2 radionuclides in seafood is shown in Figure 30. The 
CAC guideline level is shown for comparison. 
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Fig. 30. Concentration of radionuclides (Group 2) in seafood.  
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The predicted concentration of radionuclides in fish is lower then the CAC guideline level 
for group 2 radionuclides. Results of the simulations for crustaceans and molluscs 
indicate that the radionuclide concentrations in the zone of the accident exceeds the CAC 
guideline level for a period of approximately one to two months after the accident. The 
predicted maximum values of the radionuclide concentration in crustaceans and 
molluscs are around 120 and 700 Bq/kg, respectively. The radionuclides that impacted 
the concentration levels in seafood (for group 2) the most were 131I, 241Pu and 106Ru. 

The concentrations of group 3 radionuclides in seafood are shown in Figure 31.  
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Fig. 31. Predicted concentration of radionuclides (Group 3) in seafood. 

 
 

The results of the simulations for group 3 radionuclide concentrations in seafood 
indicate that the radionuclide concentrations in box 2 (the accident location) exceeds the 
CAC guideline value of 1000 Bq/kg for a period of approximately one-two weeks after 
the accident. The concentration of radionuclides is dominated by the level of 132Te 
during these weeks. 126Sn and 144Ce (for molluscs) start to dominate the concentration 
level of group 3 radionuclides in seafood during the time following the two weeks after 
the accident. 

Figure 32 shows that the contamination curves of seafood by group 4 radionuclides lies 
under the guideline levels for general food, but exceeds the guideline level for infant food 
for a period of approximately one week after the accident. 127Te, 129mTe dominate the 
radionuclide concentration during this initial time. During the time following this week, 
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125Sb and 147Pm have a significant impact on the total concentration of radionuclides in 
fish, and 103Ru and 147Pm dominate the radionuclide concentrations in crustacean and 
molluscs.  
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Fig. 32. Predicted concentration of radionuclides (group 4) in seafood. 

 

Collective dose rates to man 

The results presented in Figures 33 and 34 show that the maximum collective dose rates 
in the studied scenario, occur during the first year after the release of radioactivity. The 
maximum collective dose rate is approximately 58 manSv per year, with 134Cs, 137Cs and 

126Sn having the highest impact on the maximum collective dose rate. 
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Fig. 33. Predicted collective dose-rates, manSv per year 
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Fig. 34. Impact of radionuclides to the collective dose rate (the first year after the 
hypothetical accident) 

Doses to the critical group 

In the present study we assume that the critical group is a population living on the coast 
of the sea region nearest to the accident location. The evaluation of the doses for this 
group will be based on an investigation of consumption patterns for the population 
living on the Norwegian coast and inland (Bergsten, 2003), where maximum seafood 
consumption is 200, 40 and 4 g/day for fish, crustaceans and molluscs, respectively.   

The individual dose rates for the ingestion pathway have been calculated on the basis of 
expressions (1) and (2), where catchments of seafood were replaced by consumptions 
for the critical groups.  

The proportions of the total calculated dose attributable to the different types of seafood 
are presented in Figure 35, corresponding to the maximum dose rate. Figure 35 shows 
that for the present scenario 134Cs, 137Cs and 126Sn were the three radionuclides that gave 
the most significant contribution to the doses received from ingestion of seafood for the 
critical group. It is also necessary to note that the impact of 144Ce is significant for the 
doses from crustaceans and molluscs. 

The calculated maximum dose-rate equals 110 Sv yr-1, which is significantly lower than 
the average annual dose of 1-10 mSv from nature sources. At the same time, this dose-
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rate is  significantly higher than range 1 - 10 Sv yr-1 for the negligible component to the 
annual individual dose from natural sources (UNSCEAR, 2000) and, therefore, has to be 
under consideration during evaluation of the accident consequences. 
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Fig. 35. Potential dose impact to the critical group from fish, crustaceans and molluscs 
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Conclusions of submarine accident analysis 

The consequences of an accident with a modern Russian submarine were calculated on 
the basis of the most conservative scenario from the ones were under consideration in 
the present investigation.   

Calculations indicate that, generally, concentration of radionuclides in seafood would be 
under the international guideline levels for different groups of radionuclides. 
Simultaneously, results of calculations indicated that concentrations of radionuclides for 
some marine organisms during initial time of release near the accident location 
exceeded guideline levels. Elevated levels of radionuclides in marine food products may 
lead to economical consequences in a market very sensitive to contaminants, even if they 
don't exceed guideline levels.  

Calculated collective dose rates to man as well as doses to a critical group are 
significantly lower than doses from natural sources, but at the same time, these dose-
rates are significantly higher than the negligible component to the annual individual 
dose from natural sources (UNSCEAR, 2000) and, therefore, have to be taken into 
consideration during evaluation of the accident consequences.  
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6 Conclusions 

In the study consequences of severe radioactive releases to Nordic marine environment 
has been preliminary considered. The research activity has covered areas of Nordic 
marine input data, radioactive source term evaluations for nuclear power plants and for 
submarine vessels, marine flows and dilution aspects, element specific sorption and 
transfer factors and preliminary radiation dose estimates to human. 

As a reference, the release amounts from a 3000 MWth reactor size were used. Based on 
source term analyses, the chosen release fractions in the study were: iodine 20% (of  the 
total core inventory), caesium 10%, tellurium 10%, strontium 0.5%, ruthenium 0.5%. 
The considered release event to marine environment were assumed to start ten hours 
after shutdown of the reactor. Total released amounts of the most important nuclides 
were estimated to be: 4.85 1017 Bq  (I-131),  7.29 1016 Bq (Cs-134) and 4.17 1016 Bq (Cs-
137). 

Due to the highly contaminated sea food, the arising doses to human would be high 
especially in local sea area. Based on preliminary results, annual individual doses could 
be ten to some hundreds of millisieverts from local sea area. The most important 
nuclides were Cs-134, Cs-137 and I-131 causing 96% of the total ingestion dose. 

In the Baltic Sea area, the arising doses from a severe nuclear power plant accident 
assumed to happen at Gulf of Finland, would be about 1/10000 compared to doses in the 
local sea area.  Thus the arising maximum annual individual dose for fish pathway is in 
the level of 0.1 mSv in the Baltic Sea area.  

Submarine accident assumed to happen at Icelandic waters, has been analysed in the 
study. The calculated collective dose rates to man as well as doses to a critical group are 
significantly lower than doses from natural sources. However, in local considerations 
dose-rates are significantly higher than the negligible component to the annual 
individual dose obtained from natural sources (UNSCEAR, 2000) and, therefore, have to 
be taken into consideration during evaluation of the accident consequences. 

In the planned continuing phase of the activity, more detailed marine 3D flow 
simulations will be done and utilized for Icelandic and the Faroese waters. Additionally, 
important model validation against measured data is necessary to curry out e.g. for the 
Baltic Sea region. 
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Abstract In the report, consequences of hypothetical severe nuclear accidents 

releases to Nordic marine environment are preliminary considered. The 
considered marine area comprises the Baltic Sea (Sweden, Denmark, 
Finland) and the North Atlantic (Iceland, Faroes, Norway) areas. The 
hypothetical severe nuclear accidents can be related to nuclear power 
plants, nuclear powered submarines or ice-breakers. 

 
Quite comprehensive survey on radioactive source terms of extremely 
severe nuclear power and submarine accidents has been done. This enables 
to estimate more realistically possible radioactive releases of various 
elements and nuclides to marine environment. One recent reference is of 
course the Fukushima accident and estimated releases there. 
 
The marine flows and dilution circumstances around the Nordic nuclear 
power plants and in the Baltic Sea area in general, has been studied. 
Respectively marine flows related to Iceland and Faroes coasts are 
considered with measured data and with preliminary 3D-model simulations. 
The substantial depth of sea water in the North Atlantic affect vertical 
concentration profiles to some extent. At Icelandic or Faroese waters, a 
potential submarine accident would likely occur in a well defined water 
mass, and radioactivity from the accident would be detected and spread 
with the flow regime of the water mass in the world ocean.  

 
Based on hypothetical severe accidents scenarios, preliminary  consequence 
calculations has been done. It should be emphasised that the considered 
severe accident cases, considered in this study, do not directly attach any 

 
 



specific Nordic nuclear power plant or any specific submarine type. The 
considered radioactive releases will, however, provide specified references 
for more extensive consideration of environmental consequences of severe -  
or minor – radioactive releases to Nordic marine environment. 
 
As a reference, the release amounts from a 3000 MWth reactor size were 
used. Based on source term analyses, the chosen release fractions in the 
study were: iodine 20% (of  the total core inventory), caesium 10%, 
tellurium 10%, strontium 0.5%, ruthenium 0.5%. The considered release 
event to marine environment were assumed to start ten hours after 
shutdown of the reactor. Total released amounts of the most important 
nuclides were estimated to be: 4.85⋅1017 Bq  (I-131),  7.29⋅1016 Bq (Cs-134) 
and 4.17⋅1016 Bq (Cs-137). 

 
Due to the highly contaminated sea food, the arising doses to human from a 
hypothetical severe nuclear power plant accident would be high especially 
in local sea area. Based on preliminary results, annual individual doses 
could be ten to some hundreds of millisieverts from local sea area. The 
most important nuclides were Cs-134, Cs-137 and I-131 causing 96% of 
the total ingestion dose. 

 
In the Baltic Sea area, the arising doses from a severe nuclear power plant 
accident assumed to happen e.g. at Gulf of Finland, would be about 
1/10000 compared to doses in the local sea area. Thus the arising maximum 
annual individual dose for fish pathway is in the level of 0.1 mSv in the 
Baltic Sea area.  
 

Submarine accident assumed to happen at Icelandic waters, has been 
analysed in the study. The calculated collective dose rates to man as well as 
doses to a critical group are significantly lower than doses from natural 
sources. However, in local considerations dose-rates are significantly 
higher than the negligible component to the annual individual dose 
obtained from natural sources (UNSCEAR, 2000) and, therefore, have to be 
taken into consideration during evaluation of the accident consequences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Key words severe radioactive releases, marine environment, nuclear power plants, 
submarines, doses 

 
 

Available on request from the NKS Secretariat, P.O.Box 49, DK-4000 Roskilde, Denmark. 
Phone   (+45) 4677 4041, e-mail  nks@nks.org, www.nks.org 


	Abstract
	Key words

